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Oscillations of a rigid edge inelnsion placed in an elastic half-plane, coupled with an elastic medium and extending onto a surface 
perpendicular to it, are considered. The oscillations are induced by a plane harmonic Rayleigh mirfae.e wave propagating in the 
elastic medium. To solve this problem, the disp~eement field in the half-plane is expressed as a superposition of the displacements 
induced by the propagating Rayleigh wave and two discontinuous solutions of the Lain6 equations with jumps at the boundary 
of the half-plane and at the line along which the inclusion is situated. The unknown jumps are determined from the boundary 
conditions and the conditions of the interaction of the inclusion with the medium. This reduces the problem to the solution of 
a system of singular integral equations, with a stationary singularity, for the jumps of the stresses on the line of the inclusion. 
The system is solved numerically by mechanical quadratures. The parameters of the motion of the inclusion and the stressed 
state of the medium m:ar it are investigated. © 1997 Elsevier Science Ltd. All rights reserved. 

1. Cons ider  an elastic half-plane --00 < x < .o, y > 0, whose boundary  is stress-free 

Cy(X, +0) = xy,(x, +0) = 0, --~ < x < oo (1.1) 

and  which contains a thin rigid inclusion situated in the closed interval x = 0, 0 a y ~ h. The  stress is 
discont inuous across the line on  which the inclusion is situated, with jumps  

(fly) = ~x( +0, Y) - ~r( -'0, Y) = Z,(Y) 
(1.2) 

(x,y) = %(+0 ,  y) - x,s(-0, y) = Z2(Y) 

A plane harmonic  Rayleigh wave [1], propagat ing along the positive direct ion o f  the x axis, p roduces  
displacements  in the med ium 

uR(x' y) = Cexp(i×Rx) [exp(-×2glY)-~-R exp(-×2g2Y)] (1.3) 

v R (x, y) = iC exp(i×Rx)[~-Rlgt exp(-×2g ly) - l.t R exp(-x2g2y)]  

g , = ~ _ ~ 2 ,  g2=X/-~R_I ' g 3 = 2 ¢ 2 _ i ,  ~=c21c,, ~t¢=c21c R 

g?=2~Rgl/g 3, ×R=tO/CR, Xj=t.O/Cj, j = l , 2  

where  cl, c2 and cp are the velocities of  longitudinal, transverse and surface waves, respectively, in the 
medium,  and co is the oscillation frequency. In  view of  the linearity, we will hencefor th  omit  the t ime 
fac tor  e x p ( - i ~ ) .  

We will assume that  the inclusion is coupled with the elastic medium.  Then  the  following condit ions 
mus t  hold on the posit ion line o f  the inclusion 

u(_0, y) = 81 + TY, v(_0, y) = 82, y e [0, h] (1.4) 

where  81 and 52 ~re the horizontal  and vertical displacements and y is the  angle th rough  which the 
inclusion rotates. The  quantities ~1, 52, Tmay be determined f rom the equations o f  mot ion of  the inclusion 
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mXc = F~e -''°t, mYc = F~,e -i°~, Jc ~. = Me -i°~ (1.5) 

where xc andyc are the displacements of the centre of gravity of the inclusion, e is the angular acceleration, 
m is the mass of the inclusion, Ic is its moment  of inertia about an axis through the centre of gravity, 
and Fx, Fy and M are the forces and moment  exerted on the inclusion by the medium, which are defined 
by the formulae 

h h h 

F x =J Zt(y)dy,  ~ , = J  Z2(y)dy,  M = J  yg l (y )dy  (1.6) 
0 0 0 

The displacements in the elastic half-plane are represented as 

U = 1~ 1 + U 2 + UR, l l =  U 1 + I12 + O R (1.7) 

where ul and v 1 are solutions of the Lam~ equations with jumps (1.2), and u2 and v2 are solutions of 
the Lam4 equations at the boundary of the half-plane 

[oy] = 01(x), [xyx] = ¢2(x), [v ] = 03(x), [u] = 04(x) (1.8) 

[fl =/(x,  +o) - f(x, -o)  

These solutions are given by formulae (2) in [2] and (1.2) in [31 . 
The jumps Ck(X) (k = 1, 2, 3, 4) occurring in v2 and u2 may be determined from conditions (1.1). But 

as these conditions are not sufficient to determine all four jumps, we need two additional conditions. 
They may be obtained by requiring that 

uz(x, --0) = t,2(x, --0) = 0 

It then follows from definition (1.8) of the jumps that 

[u2] = ~(x, +0) = 03(x), [u2] = u2(x, +0) = ¢4(x) (1.9) 

Substituting u2 and v2 from [2, 3], taking Fourier transforms with respect tox and applying the convolution 
theorem, we obtain 

~3 (IX) = R(IX) -I [x22TI (IX)OI (ix) + (-iix)B(IX)(I)2 (ix)] 
~4 (ix) = R(IX)-' [x2'y2 (ix)~2 (ix) - (-iix)B(ix)dP, (ix)] 
R ( I X )  = ( 2 I X  2 - x22)2 _ 4 I X 2 T I  (Or )T2  (IX),  B ( I X )  = 2IX 2 - X 2 - 2yt (ix)T2 (ix) 

2 T j ( i x ) = ~ - x j ,  j = 1 , 2  

(1.10) 

where Ok(ix) are the Fourier transforms of the jumps. 
Formulae (1.10) yield 

[vr2 ] = J? e x p ( i i x ( ~ - x ) ) ( T l ( I x ) d 3 ( y ' I x )  
2 -** R(IX) ~ (-i ix)d2(y,  ix ) 

dj (y, lx) = (2ix 2 - x 2)e -'t°" - 2YtY2 e-v2y, 

("-iix)dl(Y, ix) 

Y2 (ix)d4 (Y, Ix)jL¢2 (rl)J 

d2 (y, ix) = (2ix 2 _ ×2)e-V:y _ 2YiY2e-VO., (1.11) 

d3 (y, Ix) = (2ix 2 _ ×2 )e--ny _ 2a2e-,hy, d4 (y, Ix) = (2ix 2 _ ~2 )e--tzv _ 2ix2e-YO , 

We now substitute (1.7) into boundary conditions (1.1). Taking (1.11) into consideration, as well as 
the expressions for ul and vl in [2], we obtain the following equalities 

*l(x) = -  ~ _ ~  (-i ix) e-i°a" 
2nx2 o Zz 01)__7 2yl (a)  

l h ,~ 
d I (a,  ~)dixdrl - ~ J Z2 (~) J d3 (11, oOe-i'Z'dixdq 

4rtx~ 0 -~ (1.12) 



Interaction of a plane harmonic Rayleigh wave with a thin rigid edge inclusion 247 

XI(~q) I d4(ot.n)e-'°~d~t'q-~l_~2I X2(rl) 7 (-ia)e-iet~ d2(a.rl)d~drl 
4a:x2 0 - ~  4Xx2  0 -** Y2((x)  

In deriving these formulae we have used the fact that the following conditions hold for (1.11) 

2 (x,+O) = ¢2(x) o~(x,+O) = 01(x). ~,~ 

The final repres~mtation of u2 and v2 in terms of the jumps XaO¢) and X2(Y) now follows from (1.11) 
and (1.12) 

2 h 
0 2 ( x , Y ) =  X J Zj(I1)DD(rl, y,x)dll 

j=l  0 

2 h 
u2(x,y)= Y. ~ Zj(TI)D2j('q,Y,x)d~ 

j=l  0 

(1.13) 

where 

1~ 7 e -i°~ 
Dkj('q, y,x ) = 2rex 2 _~. R-('~ Fk) (cx' rl' y)dct' k = 1,2; j = l , 2  

and the functions F~{ot, rl, y) are expressed in terms of d.,(ot, y) and dm(~ 11) (m = 1, 2, 3, 4). 

2. Formulae (1.71) and (1.3) enable us to express the displacement and stress field and in the elastic 
half-plane in terms of the unknown jumps of the stresses at the inclusion. To determine them, we will 
use conditions (1.4), after first differentiating them in order to eliminate the unknown constants 81 and 
~ .  Conditions (1.41) then become 

~( -+0 ,y)=T,  ~-y(:L0,y)=0, y¢[0,h] (2.1) 

These equalities will be equivalent to (1.4) if we add the further conditions 

u(±0, 0) = St, v(±0, 0) = 52 (2.2) 

Substituting (1.7) into (2.1) and (2.2), we obtain a system of integral equations for the unknown jumps 
in the stresses at the inclusion 

1 

03j (X)[sj (x - t) + K) (% t)]dx = pj (t), t ~ [0, I] 
0 

, (2.3) 
03j(x)[Soj(X)+ Kj(x,O)]dx = 8oj - Poj, J = 1,2 

0 

where we have used the following notation 

x=hl 'q ,  t=h-ly ,  03j('g)=l.t-lxj(h'f,), ~oj=h-I~)j, j= l , 2 ,  ×0=×2h 

The kernels of the integral operators in (2.3) are as follows: 
1 0* 

SOj  ('~ -- t) = - ~  ~. Lj(~)exp(i~xo(X - t))d~, Lj ([~) -- ~,-~1 (~LI2L 2 _ ~2 ) 

s.i(x-t)=~---;Soj(X-t ), j = l , 2 ;  X,=4152-~ 2, ~-2=4132-1 

1 (2.4) 

~ ( ~ , z , t )  = R.(~) -1Aj(~,x,t) 
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Aj(~,'Lt) = ×75 F12(×2~,hz, ht), A2(~,Z,t) = ×75 F21(×2~,h'c, ht) 

R. ([3) = x2-4R(x2~) = (2132 - 1) 2 - 4~2~q~L2 

The fight-hand sides of (2.3) are defined as follows: 

pl(t)=Y+'~y (O, ht), P2(t)=-~-(O, ht), Poi=h-iuR(O,O), Po2=h-lvR(O;O) 

Let us investigate the properties of  the functions defined in (2.4). We first consider the functions s0j 
and sj. In view of the asymptotic expansion 

L s(13) ( l*~.  2 
- + 0 0 - 3 ) ,  13-,oo 

it follows from the integral representation in (2.4) that 

(l + ~2) inlzl + O(z 2 lnlzl) s°S(z) = 2 

S j ( Z )  = -- l + ~ 2  
2z +s~y(z), s~s(z)=O(zlnlzl), z--~O 

(2.5) 

Now consider the functions Kj(x, t). In the integral of (2.4) representing these functions, we introduce 
attenuation in the medium and change to contour integration in the complex plane of 13 = o + i~ (see 
[1]). We then pass to the limit of a medium without attenuation and obtain 

-~ { Aj(~R"C't) ~ S AJ(~'? 't) d~l, j= l ,2  
Koj(Z,t)= 2~i -R,.-~R ) k=t L~ !?,.(15) J 

Cut the plane along a curve L1 from the point I~ = ~, consisting of  the segment of the real axis 0 < 6 
< ~ and the positive imaginary axis ~ > 0. Make a further cut L2 from the point I~ = 1, consisting of 
the segment of the real axis 0 < 6 < 1 and the positive imaginary axis ~ > 0. These cuts are defined 
by the choice of a single-valued branch of  the functions ~(1~) in accordance with (1.12). 

Transforming the integrals along the cuts, we obtain 

K j ( z , t )  = i A J(-, "R ' z ' t )  " ~ ~- K u ( z , t ) + i K 2 j ( Z , t ) + i K ~ s ( Z , t  ) 
R,(~R) 

KU(X,t)= ~9_ 7 V~(~,x,t) d~ ' ~0 ~' V2(ff,'l:,t) 
Z ~ 0  R4(;  ) K2j (~',/) = - ~-~- ~ ~ do" 

=_~0} v,(a,z, t)  . ~t • acL A~(~,x,t) = aj(~,z,t) K3j(x't) 2rc ~ Ro((~ ) 

(2.6) 

Ro([~ ) ()~3)4 -I- 16134 + - 2 = ()~1~,2), R3 ([~) = ()~3)2 - 4~2~,/~,2 
2 + +  + R4(13)=(~,~)2-4~ XIX2, ~,~=2132+1 

The functions Vq(13, x, t), (k = 1, 2, 3; j = 1, 2) are expressed in terms of their values at the edges of 
the euts, A'j(I}, x, t). 

It can be shown that the first and last terms in (2.6) are bounded as x, t ---) 0, and that K~(x, t) = O(x 
+ t)). 



Interaction of a plane harmonic Rayleigh wave with a thin rigid edge inclusion 249 

Let us investigate: the behaviour as x, t ~ 0 of the function ru(x, 0. The integrand in (2.6) that defines 
Kai(x, t) admits of  the following asymptotic expansion as x, t ~ 0, ~ ~ ** 

vu(4,z,t) 
R4 (~) = Voj (4, '~, t) + 0(4 -2 ) 

Voj(4,x,t) = - 2 ×  0 Y. Bk(x,t)4 2-t sin(4×0(x+t)+ kn) (2.7) 
k=0 

n0l ('C,/) = n02 (X, t ) = ×02(1 -~2)Xt 
Bil(X,t ) = - I~ x0[(3-  ~2)X + (1 -~2)t]+O(('C+t)2) 

Bl 2 (X, t) = - t~ x0 [2(1 - ~2 )X + (~4 _ I)(X + t)] + O((X'+ 0 2 ) 

B21=(l_~2)+O((x+t)), B2 2=~4 +O((x+t)) 

B31 = B32 = O((1:  + t ) )  

It follows from (2..7) that the integrals defining K~{x, t) are divergent. To give them a definite meaning, 
we transform them as follows: 

KU('C,t) = K~(z,t)+ K:j('c,t) 

K°j(Z,t)=×O ~ 2~ ~ %(;,x,t)d; 

Kljfx, t) = ~o~2= ~) [ Vuf~'x't)R4(~) 

(2.8) 

The functions/~aj,(x, t) are given by divergent integrals whose values may be defined using the theory 
of generalized functions [4]. Doing so, we deduce from (2.7) and (2.8) that 

2~;KOu(x,t)= (1-  ~2)x(x- t )  + (1+~ 4) 
(.~ + t) 3 2(l_~2)(.c+t)+O(('c+t)), j=l ,2  (2.9) 

In view of (2.5) and (2.9), the integral equation (2.3) may be written in the form 

I [ 1_ a t.~+hy(.c_t)+Bj(x,t)]dx=fj(t ) (2.10) 1%(x) + +b. x(~- 
o z I z + t  (,z + ty 

where 

f j ( t )  = n -1--~pj(t), h~(z)=O(zlnlzl), z--->O 

1 + (3 - 4v) 2 2 
B)(x,t) = O(1), x,t---> 0, a = b = 

2 ( 3 - 4 v )  ' 3 - 4 v  

(v is Poisson's ratio). 
Equation (2.10) is a singular integral equation with a stationary singularity. It has been proved [5] 

that this equation is Noetherian in the class Lx(/), I = [0, 1] and of index one. I f~  =- 0, the equation 
has only one linearly independent solution 

0)j(x) = x ~ +aj(1 - 'c)  -~  +O)0j('C), j = 1,2 (2.11) 

where ¢o0/('c) is bounded for x ~ [0, 1], and ¢z (-1 < ¢x < O) is a root of  the transcendental 
equation 
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cos not - a + b(1 + (x) 2 = 0 

In particular, if v = 0.25 then a = -0.22525. 
In accordance with (2.11), we look for an approximate solution of (2.3) as 

o~j (x) = x ~ (1 - x) -~  ~ j  (x) (2.12) 

To determine an approximation for ~/(x), after replacing the integrals in (2.3) by suitable quadrature 
formulae [6, 7], we obtain a system of linear algebraic equations 

wk'qljk [sj (X k - t m ) + Kj ('C k , t m )] = Pyre, m = 1,2 ..... n - 1 (2.13) 
k = l  

tl 

Y. wkVjk [So/(X k) + Ko/(X k,O)] = 50j - P0j, J = 1,2 
k = l  

where we have used the following notation: W/t, = ~(Xk), P/m = Pj(tm), "Ck = (1 - Xk)/2, Xk are the roots 
of the Jacobi polynomials Pn~-ltZ(x), tm = (1 - Zm)f2, Zm are the roots of the Jaeobi functions of the 
second kind 

i (1 _ x ) a ( 1  + x ) - ~  
Gn(z) = I Pna'-~(x) dx 

-1 X - - Z  

Wk = 2a+l/2hk, and A k are the coefficients of  the Gauss-Jacobi quadrature formula [7] with weight 
function (1 -x)a(1 + x) -~ .  

To determine the unknown constants T, 80/(j = 1, 2) in (2.3) which describe the motion of the inclusion 
interacting with the wave, we replace the integrals in (1.6) by suitable quadrature formulae and then 
deduce the following three equalities from (1.5) and (1.6) 

5o  I +'It = ! n 12 n 

2 xomo k=l 
! m 

502-  x02m--- ~ ~ wi.¥2,, m0= k=l ph 2 

(2.14) 

After solving system (2,13) together with (2.14), we can approximate the functions ~(x)  by inter- 
polation polynomials 

1 " Pff ' -½ (1 - 2x )  (2 .15 )  

L J 

Using (2.15), we can determine the contact stresses in the contact zone of the inclusion and the medium 

[x-lax(_+O, ht) =+ t°l(t) (t), lx'l'Cxv(:k-O, ht)=:l: °)2(t) (t) 
- 2 = - lq l  2 = + q 2  

By (2.12) and (2.15), we obtain 

q y ( t ) = ~ t ~ ( 1 - t ) - ~ Q n / ( t ) ,  j = 1,2 (2.16) 

The stressed state of the medium near the' immersed end of  the inclusion is characterized by the 
following stress intensity factors [8, 9] 

Kl= hm _-7-1 a,.(O,y), K2= hm ( - - - 1  x,~.(0,y) 
y - - )h+O k./~ ~ y - ' ~h+O ~, h • 

Evaluating the limits, we find that 
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= K)=}ak0j, j = l , 2 ,  k01=lQ2.(1), k02 ~-QI,(1) (2.17) 

where Qj.(1) are calculated from (2.15). 
The approximate solution obtained here as used in a computation for the following data: v = 0.25, 

m e  = 1, Co = c/h = 1. To obtain system (2.13), the quadrature formulae were used with up to 25 grid 
points, which was sufficient to obtain results with a relative error of less than 1%. The results of the 
numerical test are shown in Figs 1--4. 

Figure 1 shows 8~'aphs against the parameter x0 of the quantities I q~01 i, I ~ i, I ~¢ i, which describe the 
motion of the inclusion in the elastic medium. It can be seen that as x0 increases the amplitude of the 
horizontal oscillations, [ 801 I, first increases, reaches a maximum value at x0 = 1.3 and then begins to 
decrease, through a sequence of minimum and maximum points. The quantity [ y [ behaves similarly. 
Not so the amplitude [ 8o2 [ of the vertical oscillations. At first it decreases slowly, but then it has a sharp 
maximum at x0 = 0.5, subsequently behaving in a rather complicated manner, with a succession of 
maxima and minima. 

Figure 2 shows the absolute values of the stress intensity factors [k01 [, [ko2[ defined by (2.17) plotted 
against x0. These plots also show several maxima at certain frequency values. 

Figures 3 and 4 show the distribution of the absolute values of the contact stresses, I ql( t )  I and I q2(t) l, 
along the inclusion. Curves 1-3 correspond rex0 = 0.5, I and 2. It is clear that the distribution of contact 
stresses depends essentiaUy on the frequency of the propagating wave. 
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